The Dantzig selector and sparsity oracle inequalities

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Dantzig selector and sparsity oracle inequalities

and λ̂ := λ̂ ∈Argmin λ∈Λ̂ε ‖λ‖l1 . In the case where f∗ := fλ∗ , λ ∗ ∈ R , Candes and Tao [Ann. Statist. 35 (2007) 2313–2351] suggested using λ̂ as an estimator of λ. They called this estimator “the Dantzig selector”. We study the properties of fλ̂ as an estimator of f∗ for regression models with random design, extending some of the results of Candes and Tao (and providing alternative proofs of thes...

متن کامل

Sparsity oracle inequalities for the Lasso

This paper studies oracle properties of !1-penalized least squares in nonparametric regression setting with random design. We show that the penalized least squares estimator satisfies sparsity oracle inequalities, i.e., bounds in terms of the number of non-zero components of the oracle vector. The results are valid even when the dimension of the model is (much) larger than the sample size and t...

متن کامل

The Group Dantzig Selector

We introduce a new method — the group Dantzig selector — for high dimensional sparse regression with group structure, which has a convincing theory about why utilizing the group structure can be beneficial. Under a group restricted isometry condition, we obtain a significantly improved nonasymptotic `2-norm bound over the basis pursuit or the Dantzig selector which ignores the group structure. ...

متن کامل

The Dantzig Selector : Statistical Estimation

given just a single parameter t. Two active-set methods were described in [11], with some concern about efficiency if p were large, where X is n× p . Later when basis pursuit de-noising (BPDN) was introduced [2], the intention was to deal with p very large and to allow X to be a sparse matrix or a fast operator. A primal–dual interior method was used to solve the associated quadratic program, b...

متن کامل

Multi-Stage Dantzig Selector

We consider the following sparse signal recovery (or feature selection) problem: given a design matrix X ∈ Rn×m (m À n) and a noisy observation vector y ∈ R satisfying y = Xβ∗ + 2 where 2 is the noise vector following a Gaussian distribution N(0, σI), how to recover the signal (or parameter vector) β∗ when the signal is sparse? The Dantzig selector has been proposed for sparse signal recovery w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bernoulli

سال: 2009

ISSN: 1350-7265

DOI: 10.3150/09-bej187